Photolysis of Pentachloropyridine and Pentachloropyridine 1-Oxide

By E. Ager, G. E. CHIVERS, and H. SUSCHITZKY*

(Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 4WT, Lancashire)

Summary Pentachloropyridine gives 2,3,4,6-tetrachloropyridine in practicable yield on photolysis while pentachloropyridine 1-oxide ring opens and rearranges to pentachlorobutadienyl 1-isocyanate.

PHOTOLYSIS of pentachloropyridine in dioxan or diethyl ether (cf. Table 1) constitutes to date the best preparative method for 2,3,4,6-tetrachloropyridine. Previous routes have involved either unsuitable laboratory techniques or lengthy multi-stage syntheses.¹ The results are analogous to those obtained from irradiation of various substituted chlorobenzenes which in benzene give the corresponding biphenyls and in other solvents dechlorinated products.

Metallation of 2,3,4,6-tetrachloropyridine with n-butyllithium to give tetrachloro-3-pyridyl-lithium occurred readily (33%) and provides a potential synthetic route to the rather inaccessible 3-substituted tetrachloropyridines. Some nucleophilic substitution reactions of 2,3,4,6-tetrachloropyridine are given in Table 2.

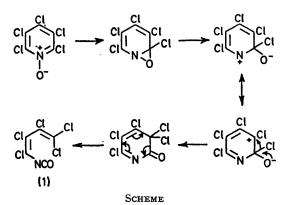
Substitution *para* to hydrogen in 2,3,4,6-tetrachloropyridine would be expected by analogy with pentachlorobenzene³ because of the stability of a *para*-quinonoid intermediate in which the I_{π} effect is absent. This is particularly marked when the aprotic benzene is the solvent (cf. Table 2).

Photolysis of pentachloropyridine 1-oxide⁴ in dry carbon tetrachloride resulted in a complex mixture, inseparable on a column. Distillation at 0.2 mm, however, gave pentachlorobutadienyl 1-isocyanate (1; b.p. 55°/0·2 mm) together with pentachloropyridine. An authentic sample of

TABLE 1

Photolysis of 0.04m solutions of pentachloropyridine using a medium pressure lamp (1 l Hanovia photochemical reactor)

Solvent	Time (h)	Products (%)†
Benzene	18	2,3,4,6-Tetrachloro-5-phenyl- pyridine (50)
Dioxan	90	2,3,4,6-Tetrachloropyridine (42) 2,3,5,6-Tetrachloropyridine (trace)
Diethyl ether	24	2,3,4,6-Tetrachloropyridine (43) 2,3,5,6-Tetrachloropyridine (trace)
Cyclohexane	120	2,3,4,6-Tetrachloropyridine (10)


TABLE 2

Some reactions of 2,3,4,6-tetrachloropyridine with nucleophiles (2 equiv.)

	1 (1)
Reagent/Solvent	Products (%)†
$NaOH/H_2O$	2,3,4-Trichloro-6-pyridone (34) 2,3,6-Trichloro-4-pyridinol (28)
	2,4,5-Trichloro-6-pyridinol (4)
NaOH/MeOH	2,3,6-Trichloro-4-methoxypyridine (61)
MeNH,/EtOH	2,4,5-Trichloro-6-methylaminopyridine (25)
	2,3,6-Trichloro-4-methylaminopyridine (50)
C ₅ H ₁₁ N/EtOH	2,3,4-Trichloro-6-piperidinopyridine (2)
	2,3,6-Trichloro-4-piperidinopyridine (53)
	2,4,5-Trichloro-6-piperidinopyridine (8)
$C_{\mathbf{s}}H_{11}N/C_{\mathbf{s}}H_{\mathbf{s}}$	2,3,4-Trichloro-6-piperidinopyridine (14)
	2,3,6-Trichloro-4-piperidinopyridine (23)
	2,4,5-Trichloro-6-piperidinopyridine (60)

the isocyanate (1) was prepared from pentachloro-2,5pentadienoyl chloride⁵ and sodium azide in aqueous acetone to give first the corresponding acid azide [(1; NCO replaced by CON₃) bands at 2130, 2160 cm⁻¹: $-N_3$, and at 1695 cm⁻¹, >C==O] which was made to rearrange in boiling benzene to the product (b.p. $55^{\circ}/0.2 \text{ mm}$; band at 2260 cm⁻¹, NCO). The isocyanate was further characterised with dry methanol to give methyl N-pentachlorobutadienyl carbamate (m.p. 71---73°).

This photolysis result is noteworthy since it appears to be the first recorded photo-rearrangement of a heteroaromatic N-oxide to give an isocyanate. By analogy with the known photolytic behaviour of N-oxides⁶ we postulate the mechanism shown in the Scheme for the formation of (1).

We thank the S.R.C. for a Fellowship (to E.A.) and Dr. M. B. Green of I.C.I. (Mond Division) for gifts of pentachloropyridine.

(Received, 23rd February 1972; Com. 299.)

† All products had the correct analysis and spectra (m.s. and i.r.) in accord with structural assignment.

¹ W. J. Sell and F. W. Dootson, J. Chem. Soc., 1898, 440; *ibid.*, 1900, 1; H. J. den Hertog, J. C. M. Schögt, J. de Bruyn, and A. de Klerk, Rec. Trav. chim., 1950, 69, 673; H. Holtschmidt and W. Zecher, Belg. P., 622,832/1962 (Chem. Abs., 1963, 59, 11534f); W. H. Taplin, U.S. P., 3,420,833/1969 (Chem. Abs., 1969, 71, 3279).
 ² G. E. Robinson and J. M. Vernon, J. Chem. Soc. (C), 1971, 3363.
 ³ J. Burdon, Tetrahedron, 1965, 21, 3372.

- ⁴ G. E. Chivers and H. Suschitzky, J. Chem. Soc. (C), 1971, 2867.
 ⁵ A. Roedig and G. Märkl, Annalen, 1960, 636, 1.
- ⁶ G. G. Spence, E. C. Taylor, and O. Burchardt, Chem. Rev., 1970, 70, 231.